Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Trends Microbiol ; 31(6): 629-643, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801155

RESUMO

Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.


Assuntos
Nematoides , Simbiose , Animais , Nematoides/microbiologia , Nematoides/patogenicidade
2.
BMC Genomics ; 23(1): 239, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346027

RESUMO

BACKGROUND: Peanut is the most essential oil and food crop globally due to its high oil and protein content. Root-knot nematode infects peanut roots, causing poor development and severely limiting peanut yields worldwide. The discovery of peanut genome identified a considerable number of genetic loci controlling the peanut root-knot nematode; however, the molecular mechanism of root-knot nematode remains unknown. RESULTS: The heterogeneous response to root-knot nematode stress in peanut roots was identified using whole-transcriptome RNA-seq. A total of 430 mRNAs, 111 miRNAs, 4453 lncRNAs, and 123 circRNAs were found to have differential expression between infected and non-infected peanuts. The expression profiles of the lncRNA/circRNA-miRNA-mRNA network were developed to understand the potential pathways that lead to root-knot nematodes in peanut roots. During root-knot nematodes stress, a total of 10 lncRNAs, 4 circRNAs, 5 miRNAs, and 13 mRNAs can create competing endogenous RNA and participate in the oxidation-reduction process as well as other biological metabolism processes in peanuts. The findings will highlight the role of peanut ceRNAs in response to root-knot nematodes. CONCLUSION: The GO classification and KEGG pathway enrichment study of core regulatory networks revealed that ceRNAs are involved in oxidation-reduction, peroxidase activity, lignin synthesis in the xylem, and flavonoid synthesis. Overall, these findings may help researchers better understand the role of non-coding RNAs in response to root-knot nematodes.


Assuntos
Arachis , MicroRNAs , Nematoides/patogenicidade , RNA Circular , RNA Longo não Codificante , Animais , Arachis/genética , Arachis/parasitologia , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210367

RESUMO

Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.


Assuntos
Inflamação/prevenção & controle , Nematoides/química , Traqueia/efeitos dos fármacos , Animais , Asma/fisiopatologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Hipersensibilidade/fisiopatologia , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Nematoides/patogenicidade , Ovalbumina/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Traqueia/fisiopatologia
4.
Nucleic Acids Res ; 50(D1): D898-D911, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718728

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.


Assuntos
Bases de Dados Factuais , Vetores de Doenças/classificação , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/transmissão , Biologia Computacional/métodos , Mineração de Dados/métodos , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Humanos , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Virulência , Fluxo de Trabalho
5.
Nucleic Acids Res ; 50(D1): D837-D847, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788826

RESUMO

Since 2005, the Pathogen-Host Interactions Database (PHI-base) has manually curated experimentally verified pathogenicity, virulence and effector genes from fungal, bacterial and protist pathogens, which infect animal, plant, fish, insect and/or fungal hosts. PHI-base (www.phi-base.org) is devoted to the identification and presentation of phenotype information on pathogenicity and effector genes and their host interactions. Specific gene alterations that did not alter the in host interaction phenotype are also presented. PHI-base is invaluable for comparative analyses and for the discovery of candidate targets in medically and agronomically important species for intervention. Version 4.12 (September 2021) contains 4387 references, and provides information on 8411 genes from 279 pathogens, tested on 228 hosts in 18, 190 interactions. This provides a 24% increase in gene content since Version 4.8 (September 2019). Bacterial and fungal pathogens represent the majority of the interaction data, with a 54:46 split of entries, whilst protists, protozoa, nematodes and insects represent 3.6% of entries. Host species consist of approximately 54% plants and 46% others of medical, veterinary and/or environmental importance. PHI-base data is disseminated to UniProtKB, FungiDB and Ensembl Genomes. PHI-base will migrate to a new gene-centric version (version 5.0) in early 2022. This major development is briefly described.


Assuntos
Bases de Dados Factuais , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Plantas/microbiologia , Plantas/parasitologia , Virulência
6.
Cienc. tecnol. salud ; 9(2): 166-181, 2022. il 27 c
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415649

RESUMO

En Guatemala, la producción del cultivo de papa se ve afectada por los nematodos Globodera rostochiensis y Globo-dera pallida. La capacidad de ambas especies para formar quistes complica su control y provoca el aumento de sus poblaciones. En Guatemala se reporta la presencia de ambas especies de nematodos por identificación morfológica, sin embargo, no se ha realizado una confirmación molecular. Este es el primer estudio para validar la presencia de ambas especies de nematodos por PCR múltiple y la determinación de la diversidad y estructura genética de las poblaciones utilizando marcadores moleculares. Se realizaron muestreos en cuatro departamentos productores de papa del país. La identificación por PCR se realizó con el cebador común ITS5 y los cebadores PITSr3 específico para G. rostochiensisy PITSp4 para G. pallida. La caracterización molecular se realizó con el marcador AFLP. Se confirmó la presencia de las dos especies de nematodos en los cuatro departamentos. Los índices de diversidad Shannon y heterocigosidad esperada revelaron mayor diversidad genética en G. rostochiensis (H = 0.311, He = 0.301) que en G. pallida (H = 0.035, He = 0.223). Los métodos NJ, DAPC y PCA exhibieron una débil estructura entre las poblaciones de ambas especies de nematodos. Los resultados sugieren un patrón de dispersión desde Quetzaltenango hacia el resto del país, atribuido a la comercialización de semilla contaminada con nematodos. Se sugiere promover programas de socialización sobre los beneficios del uso de semilla certificada, además de constantes monitoreos moleculares para un diagnóstico certero de ambas especies de nematodos.


In Guatemala, potato crop production is affected by the nematodes Globodera rostochiensis and Globodera pallida. The ability of both species to form cysts complicates their control and causes an increase in their populations. In Guatemala, both species of nematodes have been reported by morphological identification; however, molecular confirmation has not been carried out. It is the first study to validate the presence of both nematode species by multiplex PCR and determine the diversity and genetic structure of the populations using molecular markers. Sampling was carried out in four pota-to-producing departments of the country. PCR identification was performed with the common primer ITS5 and the primers PITSr3 specific for G. rostochiensis and PITSp4 for G. pallida. We performed molecular characterization with the AFLP marker. We confirmed the presence of the two nematode species in the four departments. Shannon diversity and expected heterozygosity indices revealed higher genetic diversity in G. rostochiensis (H = 0.311, He = 0.301) than in G. pallida (H = 0.035, He = 0.223). The NJ, DAPC, and PCA methods exhibited weak structure among populations of both nematode species. The results suggest a dispersal pattern from Quetzaltenango to the rest of the country, attributed to the commer-cialization of seed contaminated with nematodes. We suggest promoting socialization programs on the benefits of using certified seeds and constant molecular monitoring for an accurate diagnosis of both species of nematodes.


Assuntos
Variação Genética/genética , Solanum tuberosum/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Nematoides/genética , Parasitos/parasitologia , Doenças das Plantas/parasitologia , Sementes/parasitologia , Estruturas Genéticas/genética , Guatemala , Nematoides/patogenicidade
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504005

RESUMO

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Assuntos
Anti-Helmínticos/farmacologia , Burkholderiaceae/fisiologia , Lactonas/farmacologia , Metagenoma , Mortierella/fisiologia , Nematoides/efeitos dos fármacos , Simbiose , Animais , Genômica , Redes e Vias Metabólicas , Mortierella/efeitos dos fármacos , Nematoides/patogenicidade , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Microbiologia do Solo
8.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576221

RESUMO

RNA interference (RNAi) is a powerful tool for the analysis of gene function in nematodes. Fatty acid and retinol binding protein (FAR) is a protein that only exists in nematodes and plays an important role in their life activities. The rice white-tip nematode (RWTN), Aphelenchoides besseyi, is a migratory endoparasitic plant nematode that causes serious damage in agricultural production. In this study, the expression levels of eight RWTN genes were effectively decreased when RWTN was fed Ab-far-n (n: 1-8) hairpin RNA transgenic Botrytis cinerea (ARTBn). These functions of the far gene family were identified to be consistent and diverse through phenotypic changes after any gene was silenced. Such consistency indicates that the body lengths of the females were significantly shortened after silencing any of the eight Ab-far genes. The diversities were mainly manifested as follows: (1) Reproduction of nematodes was clearly inhibited after Ab-far-1 to Ab-far-4 were silenced. In addition, silencing Ab-far-2 could inhibit the pathogenicity of nematodes to Arabidopsis; (2) gonad length of female nematodes was significantly shortened after Ab-far-2 and Ab-far-4 were silenced; (3) proportion of male nematodes significantly increased in the adult population after Ab-far-1, Ab-far-3, and Ab-far-5 were silenced, whereas the proportion of adult nematodes significantly decreased in the nematode population after Ab-far-4 were silenced. (4) Fat storage of nematodes significantly decreased after Ab-far-3, Ab-far-4, and Ab-far-7 were silenced. To our knowledge, this is the first study to demonstrate that Ab-far genes affect sex formation and lipid metabolism in nematodes, which provides valuable data for further study and control of RWTNs.


Assuntos
Botrytis/genética , Proteínas de Ligação a Ácido Graxo/fisiologia , Perfilação da Expressão Gênica , Nematoides/metabolismo , Nematoides/patogenicidade , Interferência de RNA , Proteínas de Ligação ao Retinol/fisiologia , Animais , Animais Geneticamente Modificados , Arabidopsis/parasitologia , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/química , Inativação Gênica , Proteínas de Helminto/genética , Fenótipo , Proteínas de Ligação ao Retinol/genética , Transcriptoma
9.
Sci Rep ; 11(1): 17090, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429457

RESUMO

Entomopathogenic nematodes are typically considered lethal parasites of insect hosts. Indeed they are employed as such for biological control of insect pests. The effects of exposure to entomopathogenic nematodes are not strictly limited to mortality, however. Here we explore non-lethal effects of exposure to entomopathogenic nematodes by introducing the relatively non-susceptible pupal stage of Delia antiqua to thirteen different strains. We specifically chose to inoculate the pupal stage because it tends to be more resistant to infection, yet resides in the soil where it could come into contact with EPN biological control agents. We find that there is no significant mortality at the pupal stage, but that there are a host of strain-dependent non-lethal effects during and after the transition to adulthood including altered developmental times and changes in risk of death compared to controls. We also find that exposure to specific strains can reduce risk of mortality. These results emphasize the strain-dependent nature of entomopathogenic nematode infection and highlight the positive and negative ramifications for non-lethal effects for biological control of insect pests. Our work emphasizes the need for strain-specific screening of biological control agents before wide-spread adoption.


Assuntos
Dípteros/parasitologia , Nematoides/patogenicidade , Controle Biológico de Vetores/métodos , Animais , Dípteros/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Nematoides/classificação , Pupa/parasitologia
10.
PLoS One ; 16(8): e0255762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351999

RESUMO

Exotic pests have caused huge losses to agriculture, forestry, and human health. Analyzing information on all concerned pest species and their origin will help to improve the inspection procedures and will help to clarify the relative risks of imported cargo and formulate international trade policies. Records of intercepted pests from wood packaging materials (WPM) from 2003 to 2016 in the China Port Information Network (CPIN) database were analyzed. Results showed that the number of intercepted pests from WPM was lowest in the first quarter and highest in the fourth one. The total number of interceptions increased each year, with 53.33% of intercepted insects followed by nematodes (31.54%). The original continent of most intercepted pests was Asia (49.29%). Xylophagous insects were primarily intercepted from Southeast Asian countries, whereas nematodes were primarily intercepted from Korea, Australia, Mexico, and other countries. WPM interception records were mainly concentrated in China's coastal inspection stations (98.7%), with the largest number of interceptions documented in Shanghai, followed by the inspection stations of Jiangsu Province. The proportion of pest taxa intercepted by the Chinese provinces' stations each year is becoming increasingly balanced. The number of pest disposal treatment measures for intercepted cargoes with dead non-quarantine pests increased significantly from 2012 to 2016. This reflects the fact that Chinese customs inspection stations are becoming increasingly scientific and standardizing the interception and treatment of WPM pests. The issues reflected in the database, with a view to providing a reference for future work by customs officers and researchers.


Assuntos
Controle de Pragas/estatística & dados numéricos , Embalagem de Produtos/métodos , Quarentena/estatística & dados numéricos , Navios/estatística & dados numéricos , Madeira/parasitologia , Animais , China , Comércio/estatística & dados numéricos , Insetos/patogenicidade , Nematoides/patogenicidade , Controle de Pragas/métodos , Embalagem de Produtos/estatística & dados numéricos
11.
Genes (Basel) ; 12(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206759

RESUMO

Autochthonous taurine and later introduced zebu cattle from Cameroon differ considerably in their resistance to endemic pathogens with little to no reports of the underlying genetic make-up. Breed history and habitat variations are reported to contribute significantly to this diversity worldwide, presumably in Cameroon as well, where locations diverge in climate, pasture, and prevalence of infectious agents. In order to investigate the genetic background, the genotypes of 685 individuals of different Cameroonian breeds were analysed by using the BovineSNP50v3 BeadChip. The variance components including heritability were estimated and genome-wide association studies (GWAS) were performed. Phenotypes were obtained by parasitological screening and categorised in Tick-borne pathogens (TBP), gastrointestinal nematodes (GIN), and onchocercosis (ONC). Estimated heritabilities were low for GIN and TBP (0.079 (se = 0.084) and 0.109 (se = 0.103) respectively) and moderate for ONC (0.216 (se = 0.094)). Further than revealing the quantitative nature of the traits, GWAS identified putative trait-associated genomic regions on five chromosomes, including the chromosomes 11 and 18 for GIN, 20 and 24 for TBP, and 12 for ONC. The results imply that breeding for resistant animals in the cattle population from Northern Cameroon might be possible for the studied pathogens; however, further research in this field using larger datasets will be required to improve the resistance towards pathogen infections, propose candidate genes or to infer biological pathways, as well as the genetic structures of African multi-breed populations.


Assuntos
Resistência à Doença/genética , Gastroenteropatias/genética , Oncocercose/genética , Doenças Transmitidas por Carrapatos/genética , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Gastroenteropatias/parasitologia , Gastroenteropatias/veterinária , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Parasita/genética , Nematoides/genética , Nematoides/patogenicidade , Oncocercose/parasitologia , Oncocercose/veterinária , Doenças Transmitidas por Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/veterinária
12.
Mol Ecol Resour ; 21(6): 2063-2076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33817972

RESUMO

Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).


Assuntos
Resistência à Doença/genética , Evolução Molecular , Genoma de Planta , Juglans , Nematoides , Animais , China , Cromossomos de Plantas , Juglans/genética , Juglans/parasitologia , Família Multigênica , Nematoides/patogenicidade , Árvores
13.
PLoS One ; 16(4): e0249842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901226

RESUMO

Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.


Assuntos
Abelhas/parasitologia , Parasitos/patogenicidade , Vírus de RNA/patogenicidade , Animais , Abelhas/microbiologia , Abelhas/virologia , Biodiversidade , Microsporídios/patogenicidade , Ácaros/patogenicidade , Nematoides/patogenicidade , Uruguai
14.
Biomolecules ; 11(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807784

RESUMO

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus) and causes severe environmental damage to global pine forest ecosystems. The current strategies used to control PWN are mainly chemical treatments. However, the continuous use of these reagents could result in the development of pesticide-resistant nematodes. Therefore, the present study was undertaken to find potential alternatives to the currently used PWN control agents abamectin and emamectin. Benzyloxyalkanols (BzOROH; R = C2-C9) were synthesized and the nematicidal activity of the synthetic compounds was investigated. Enzymatic inhibitory assays (acetylcholinesterase (AChE) and glutathione S-transferase (GST)) were performed with BzOC8OH and BzOC9OH to understand their mode of action. The benzyloxyalkanols showed higher nematicidal activity than did benzyl alcohol. Among the tested BzOROHs, BzC8OH and BzC9OH showed the strongest nematicidal activity. The LD50 values of BzC8OH and BzC9OH were 246.1 and 158.0 ppm, respectively. No enzyme inhibitory activity was observed for BzC8OH and BzC9OH. The results suggested that benzyloxyalcohols could be an alternative nematicidal agent.


Assuntos
Antinematódeos/uso terapêutico , Nematoides/efeitos dos fármacos , Nematoides/patogenicidade , Pinus/parasitologia , Doenças das Plantas/parasitologia , Animais , Doenças das Plantas/prevenção & controle
15.
Vet Parasitol Reg Stud Reports ; 23: 100526, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33678380

RESUMO

This study aimed to evaluate the combination effect of Heterorhabditis bacteriophora HP88 and H. indica LPP1, with the acaricides deltamethrin, amitraz and chlorfenvinphos, and the essential oil (EO) of Lippia triplinervis, against engorged females of Rhipicephalus microplus. In order to verify the effect of acaricides and EO, the adult immersion test was used, and in the groups treated only with entomopathogenic nematodes (EPNs), 150 infective juveniles were used per female. In the treatments with nematodes in combination with the acaricides or EO, the females were immersed in the solutions (acaricide or EO) and then transferred to Petri dishes for application of the nematodes. The treatment with acaricides resulted in a control percentage lower than 70%, except in the group treated with chlorfenvinphos in the second experiment (84.3%). The control percentage was 73% for L. triplinervis EO, and greater than 90% in all the groups treated with nematodes. For treatments with EPNs combined with the acaricides or EO, the efficacy was greater than 95% (except for deltamethrin + HP88), and reached 100% in the treatment with LPP1 + amitraz. It can be concluded that the EPNs at the concentrations tested were compatible with the acaricides deltamethrin, amitraz and chlorfenvinphos, and with the EO of L. triplinervis. These combinations enhance the effect of these control agents.


Assuntos
Acaricidas , Lippia , Nematoides , Óleos Voláteis , Rhipicephalus , Acaricidas/farmacologia , Animais , Larva , Lippia/química , Nematoides/patogenicidade , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/parasitologia
16.
Genes (Basel) ; 12(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573306

RESUMO

Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.


Assuntos
Imunidade/genética , Nematoides/imunologia , Infecções por Nematoides/genética , Transcriptoma/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/parasitologia , Humanos , Imunidade/imunologia , Insetos/genética , Insetos/imunologia , Nematoides/genética , Nematoides/patogenicidade , Infecções por Nematoides/imunologia , Simbiose/genética , Simbiose/imunologia
17.
Sci Rep ; 11(1): 3572, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574377

RESUMO

Root lesion nematode (RLN; Pratylenchus thornei) causes extensive yield losses in wheat worldwide and thus pose serious threat to global food security. Reliance on fumigants (such as methyl bromide) and nematicides for crop protection has been discouraged due to environmental concerns. Hence, alternative environment friendly control measures like finding and deployment of resistance genes against Pratylenchus thornei are of significant importance. In the present study, genome-wide association study (GWAS) was performed using single-locus and multi-locus methods. In total, 143 wheat genotypes collected from pan-Indian wheat cultivation states were used for nematode screening. Genotypic data consisted of  > 7K SNPs with known genetic positions on the high-density consensus map was used for association analysis. Principal component analysis indicated the existence of sub-populations with no major structuring of populations due to the origin. Altogether, 25 significant marker trait associations were detected with - log10 (p value) > 4.0. Three large linkage disequilibrium blocks and the corresponding haplotypes were found to be associated with significant SNPs. In total, 37 candidate genes with nine genes having a putative role in disease resistance (F-box-like domain superfamily, Leucine-rich repeat, cysteine-containing subtype, Cytochrome P450 superfamily, Zinc finger C2H2-type, RING/FYVE/PHD-type, etc.) were identified. Genomic selection was conducted to investigate how well one could predict the phenotype of the nematode count without performing the screening experiments. Prediction value of r = 0.40 to 0.44 was observed when 56 to 70% of the population was used as a training set. This is the first report where GWAS has been conducted to find resistance against root lesion nematode (P. thornei) in Indian wheat germplasm.


Assuntos
Estudo de Associação Genômica Ampla , Nematoides/genética , Raízes de Plantas/genética , Triticum/genética , Animais , Genoma de Planta/genética , Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Triticum/parasitologia
18.
Dev Comp Immunol ; 114: 103820, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791175

RESUMO

Nematode virulence factors are of interest for a variety of applications including biocontrol against insect pests and the alleviation of autoimmune diseases with nematode-derived factors. In silico "omics" techniques have generated a wealth of candidate factors that may be important in the establishment of nematode infections, although the challenge of characterizing these individual factors in vivo remains. Here we provide a fundamental characterization of a putative lysozyme and serine carboxypeptidase from the host-induced transcriptome of Heterorhabditis bacteriophora. Both factors accelerated the mortality rate following Drosophila melanogaster infections with Photorhabdus luminescens, and both factors suppressed phenoloxidase activity in D. melanogaster hemolymph. Furthermore, the serine carboxypeptidase was lethal to a subpopulation of flies and suppressed the upregulation of antimicrobial peptides as well as phagocytosis. Together, our findings suggest that this serine carboxypeptidase possess both toxic and immunomodulatory properties while the lysozyme is likely to confer immunomodulatory, but not toxic effects.


Assuntos
Carboxipeptidases/metabolismo , Drosophila melanogaster/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Muramidase/metabolismo , Nematoides/fisiologia , Infecções por Nematoides/imunologia , Photorhabdus/fisiologia , Animais , Imunomodulação , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Nematoides/patogenicidade , Virulência
19.
Arq. Inst. Biol ; 88: e00302020, 2021. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1348972

RESUMO

Plant parasitic nematodes are major threats to Brazilian and world agriculture. Among them, Pratylenchus brachyurus and Meloidogyne incognita stand out as major pests for several crops, including corn, cotton, soybean among others, which can be components of integrated crop-livestock-forestry systems (ICLFs). In this context, information about the host status of eucalypts (Corymbia spp. and Eucalyptus spp.) to plant parasitic nematodes becomes more relevant in Brazil, due to the use of eucalypts in ICLFs. If tree components used on this system increase the population density of P. brachyurus and M. incognita, it is possible that these pathogens could damage shorter-cycle crops. Since information about the host status of eucalypts to plant parasitic nematodes is scarce, this study evaluated the host status of some eucalypt species to P. brachyurus and M. incognita. Two greenhouse trials were done to evaluate the reproduction of P. brachyurus and one to M. incognita, using some of the most cultivated species and hybrids of eucalypts in Brazil. The population growth of P. brachyurus increased on Corymbia citriodora, Eucalyptus grandis, Eucalyptus dunnii × Eucalyptus urophylla, and E. grandis × E. urophylla after ~90 days of inoculation. Conversely, despite M. incognita reproducing well in the control plants, no individuals were recovered from C. citriodora, E. urophylla and E. grandis × E. urophylla, which were classified as resistant plants. Based on both obtained and available data, M. incognita poses no threat to eucalypt species today. However, P. brachyurus is suggested to be a threat to eucalypts.


Assuntos
Tylenchoidea , Eucalyptus , Nematoides/patogenicidade , Soja , Agricultura Florestal , Pragas da Agricultura , Zea mays , Gossypium
20.
Arq. Inst. Biol ; 88: e00312020, 2021. ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1348973

RESUMO

Phytonematodes are among the main pathogens of the common bean. In general, control practices that aim to control these pathogens have not been regularly adopted in Brazil. The objectives of the present study were to evaluate the occurrence of phytonematodes in dry bean fields in Paraná and São Paulo states and estimate the pathogenicity of Pratylenchus brachyurus to dry bean in glasshouse experiments. Root and soil were sampled for nematode extraction, identification and estimation of population density. Four glasshouse experiments with different initial population densities were carried out to evaluate the effect of P. brachyurus on the growth of dry bean plants. Six species of phytonematodes were detected, namely Helicotylenchus dihystera, P. brachyurus, Pratylenchus crenatus, Meloidogyne javanica, Meloidogyne incognita and Rotylenchulus sp. The spiral nematode H. dihystera was found in all samples and was the most abundant species in both states. The lesion nematode P. brachyurus was also frequent, reaching 94% in Paraná and 100% in São Paulo. The root-knot nematodes and Rotylenchulus sp. were reported only in São Paulo fields (45% and 18% frequency, respectively), and P. crenatus only in Paraná (12%). The most abundant nematode in the soil was H. dihystera, and in roots was P. crenatus. It was demonstrated that densities of 6.66 specimens of P. brachyurus per cm3 of soil provoke visible and measurable root decay. In conclusion, survey data showed low phytonematode densities and pathogenicity tests demonstrated that densities above 6.67 specimens of P. brachyurus per cm3 of soil cause damage to the dry bean roots.


Assuntos
Fabaceae , Nematoides/patogenicidade , Tylenchoidea , Pragas da Agricultura , Phaseolus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...